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Abstract~In this paper we give general solutions of transversely isotropic elasticity. Their com­
pleteness and nonuniqueness are proved. We point out that famous Lekhnitskii-Hu-Nowacki
solutions and Elliott-Lodge solutions are complete if the elastic region is z-convex.

I. INTRODUCTION

As Dundurs (1970) shows, one of the characteristics of mechanics of composite materials
is anisotropy. Transversely isotropic materials are a noticeable kind ofanisotropic material.
Lekhnitskii (1940, 1981) gave general solutions of axisymmetric problems of transversely
isotropic elasticity. Eubanks and Sternberg (1954) proved that Lekhnitskii's solutions are
complete if the meridional half-section is z-convex. Recently, Wang et al. (1994) pointed
out that this condition of z-convex is unnecessary for the completeness of Lekhnitskii's
solutions. Hu (1953) and Nowacki (1954) extended Lekhnitskii's solutions to general three­
dimensional transversely isotropic elasticity. Elliott (1948) and Lodge (1955) obtained other
general solutions. Some studies for transversely isotropic elasticity can be found in Chen
(1966), Alexsandrov and Soloviev (1978), Pan and Chou (1979), Okumura (1987), Zureick
and Eubanks (1988), Ding and Xu (1988) and Horgan and Simmonds (1991).

It is the purpose of this paper to present a systematic method for the derivation of
general solutions and the proof of their completeness in transversely isotropic elasticity.
However, the general solutions are not unique. The scope of nonuniqueness of the general
solutions is also given. It is the nonuniqueness that brings us advantages which allow us to
prove that the famous Lekhnitskii-Hu-Nowacki solutions and Elliott-Lodge solutions are
special cases of our general solutions and are complete if the elastic region is z-convex.

The method used in this paper is obtained by extending our previous work (Wang,
1981; Wang, 1985; Wang and Xu, 1990; Wang and Wang, 1992) from isotropic to
anisotropic elasticity.

2. THE GOVERNING EQUATION

Let the z-axis be perpendicular to the transversely isotropic plane in a rectangular co­
ordinate system (x, y, z). The generalized Hooke's law of a transversely isotropic body reads
as

au au aw
(JX=A II -a +A I2 -;;-+A I3 ;;-,

x oy uZ

ou av aw
(Jy = A l2 -;;- +A l1 ;:;- +A 13 -a 'ox uy ,z

au au aw
(Jz = A 13 ;:;-+A I3 -a +A 33 -::;-,

ux y oz

(
au aw)

Lye = A 44 oz + ay ,

(
aw au)

Lzx = A 44 ax + az '

(
au au)

L xl' = A 66 -;;- +;:;- ,
oy uX

(1)

where (In (Jl""" L xy are stress components, u, v, w displacement components, A II,

A 12, ... ,A 66 elastic constants and
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2A 66 = All -A I2 ·

The equations of equilibrium without a body force are

orIx orxy orzx
-~- + ---;- + ---;- = 0,
ox uy uZ

orxy OrIy oryz

ox + oy + oz = 0,

orzx or vz OrIz

ox + oy +~=o.

(2)

(3)

The substitution of eqn (1) into eqn (3) yields the equation of equilibrium in terms of
the displacement vector

Pu = 0, (4)

where u = (u, v, W)T, (the superscript T denotes the transpose) and P is a 3 x 3 differential
operator matrix

02 iY 02 02
A+O( -+0( -

0(1 ax oy 0(3 ox OZIOX2 20Z2

02 02 02 02
p=

0(1 ax oy
A+O( -+0( -

0(3 oyozloy2 20Z2

02 02 02

0(3 ax oz 0( -- 0(2 A +0(4-3 0yoz OZ2

(5)

in which

02 02

A=-+-
ox2 oy2

is the two-dimensional Laplace operator and

(6)

The purpose of this paper is to find out the general solutions of eqn (4). For this
reason, we introduce another 3 x 3 differential operator Q, components of which are
"algebraic complement minors" Qij of P. They are in detail

(7)

02

QI3 = QII = -0(3V~ OXOZ'

02

Q23 = Q32 = -0(3 V~ oy OZ'

where
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and
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(8)

The "determinant" of P is represented by 2,

where

1 82

V;=A+-- i=I,2,
S; 8z2'

in which sf and s~ are two roots of the equation.

(9)

(10)

(11)

Lekhnitskii (1981, pp. 380-381) proved that the numbers Sl and S2 for any transversely
isotropic body can be real or complex (with a real part different from zero), but cannot be
pure imaginary.

From matrix algebra, it is easy to see

PQ =QP= 21,

where I is the 3 x 3 unit matrix.

3. THE GENERAL SOLUTIONS

The following theorem gives the general solutions ofeqn (4).

Theorem 1
Assume that 'P = (t/lj, t/l2' t/l3)T satisfies the following equation

2'P = O.

Then

u = Q'P

(12)

(13)

(14)

is one of the solutions of the equation of equilibrium [eqn (4)] in terms of displacements.

Proof Substituting eqn (14) into the left-hand side of eqn (4), we obtain

Pu = PQ'P = 2'P, (15)

Equation (12) is used in the second part of eqn (15). From eqn (13), the right-hand side of
eqn (15) is equal to the zero vector. In this way, eqn (14) is one of the solutions of eqn (4).
The theorem is proved.
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Lur'e (1937), Neuber (1964), Heki and Habara (1965) and Zhang (1979) had similar
results with Theorem 1 in this paper. However, the following result is the new one. It shows
the completeness of general solutions (14).

Theorem 2
Let u be an elastic displacement vector of eqn (4). Then there exists a vector function

'P that satisfies eqns (13) and (14).

Proof Assuming that u is a solution of eqn (4), let

where :FJ (j = 0, 1,2) are generalized Newton potentials, i.e.

% ..(j') = - !L Iff f( (, .11. ' () d j; d d YJ'1 4 S '1 ~, j = 0, 1,2,
n PI

in which f is any function and

(16)

(17)

Because sl (j = 0, 1,2) are not negative real numbers, the unique singular point in the
volume integral of the right-hand side of eqn (17) is only (x, y, z). According to Newton's
potential, we can still prove

V} Y;l,f) = j; i = 0, I, 2.

(Note: repeated indices do not imply summation in this paper.)
Operating 5£' in both sides ofeqn (16), we obtain

..:Ea = u.

Letting

'P = Pa,

(18)

(19)

(20)

'P will satisfy the two requirements (13) and (14) of this theorem. In fact, from eqns (20)
and (19), we have

5£''P = P5£'a = Pu = 0,

Q'¥ = QPa = ..:Ea = u.

(21 )

(22)

Equations (21) and (22) are eqns (13) and (14), respectively. This completes the proof of
Theorem 2.

4. NON UNIQUENESS OF GENERAL SOLUTIONS

The potential functions t/t of general solutions (14) and (13) are nonunique.

Theorem 3
If some solution u ofeqn (4) is represented in the same form as eqns (14) and (13), 'P

of eqns (14) and (13) may be changed into



Transversely isotropic elasticity

'P = 0/+ Ph,

~h=O.

Proof From eqns (14), (13), (23) and (24), we have

Q'P = Qo/+QPh = u+~h = u,

~'P = ~o/+P~h = O.

That is to say, 'P satisfies the same equations as 0/. So, the theorem is proved.
The following theorem represents the nondeterminate scope of 0/.

Theorem 4
Assume that the solution u of (4) has two representations

Then there exists h which satisfies

0/ I - 0/2 = Ph,

where

~h=O.

Proof Subtracting eqn (28) from eqn (27), we obtain

Let

Then

h = Qb

will satisfy eqns (29) and (30). In fact, we have

Ph = PQb = ~b = 0/ 1-0/2'

~h = Q~b = Q(o/]-o/J = o.
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(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

Thus Theorem 4 is proved.
Note: Theorems 1--4 can be extended to general anisotropic elastic bodies. Results of

this kind will be given in greater detail in future papers.
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5. LEKHNITSKII-HU-NOWACKI SOLUTIONS

Lekhnitskii-Hu-Nowacki solutions have forms

02 F ocPo
u=----

oxoz oy'

02 F ocPo
v = oyoz + Ox '

w = -~ (A+P ::2 )F'

(34)

where

F and cPo satisfy the following equations, respectively,

VTV~F= 0,

V6cPo = 0.

(35)

(36)

It is not difficult to verify that eqns (34) are the solutions of eqn (4). It will be omitted.
In this section, we will prove that solutions (34) are complete if the elastic region Q is

z-convex.
From Theorem 2, we know that if u is a solution of eqn (4), there exists (l/J [,l/J2' l/J3)

such that

{

u = Q\jl/J\ +Q12l/J2 +Q\3l/J3'

V = Q21l/J\ +Qnl/J2+Q23l/J3'

w = Q31l/Jj +Q32l/J2+Q33l/J3'

where Qij (i, j = 1,2,3) are defined by eqn (7) and l/Jj (i = 1,2,3) satisfy

:t'l/Jj=o, i= 1,2,3.

(37)

(38)

From Theorem 3, l/Jj (i = 1,2,3) in eqn (37) can be changed to tfri (i = 1,2,3) as in eqn
(23). Specially, taking h = kh 3 in eqn (23), we obtain

(39)

where

(40)

First we have:
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Theorem 5
Assume that the elastic region n is z-convex and 56, 5i, 5~ are not equal to each other.

Then there exists h3 such that

2

IF = L fY), i = 1,2. (41)
j=O

where

ofy) of~)
1 = 0, 1,2, (42)-+-=0ox oy ,

V2 f(,n = 0 i = 1,2; 1 = 0, 1,2. (43)J' ,

Proof According to Lemma 4 of the Appendix, ljJ i (i = 1,2) can be decomposed as

2

,I,," = " .I,U,) , . I 2'I' L. 'I' 1="
j=O

where

V]ljJY) =0, i=I,2; 1=0,1,2.

From Lemma 2 of the Appendix, we know the following problems have solutions

1
"~" 03hY) = ~ (OljJY) + OljJ~)),

52 OZ3 IX3 oX oy
I }=0,1,2.

V]hY) = 0,

Applying the second equation (46), we can rewrite eqn (46) as

(44)

(45)

(46)

Letting

} = 0, 1,2. (47)

and using the first equation (47), we find

Equation (45) and the second equation (47) imply

(48)

(49)
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_. a2

'1 2 t/lUJ = '12 t/lC!) + r:t. 3--'12 hYJ = 0 i = 1 2' } = 0, 1,2,
} I } l O'x

i
oz .I - , "

(50)

where Xl = X, X2 = y.
Now we define h3 by

2

h3 = I hY).
.i~O

(51 )

Then eqn (40) follows eqn (51) and the second equation (47). In view of eqns (48), (44)
and (51), ~i (i = 1,2) admit the resolution ofeqn (41); and eqns (49) and (50) are exactly
equal to (42) and (43), respectively. This ends the proof of the theorem.

Next we come to prove:

Theorem 6
Assume that the elastic region Q is z-convex and s6, si, s~ are not equal to each other.

Then the Lekhnitskii-Hu-Nowacki solutions (34) are complete.

Proof From Theorems 3 and 5, we know that if u is one of solutions of eqn (4), u can
be represented as follows:

{

U = Q11~1 +QI2~2+Q13~3'
V = Q21t/11 +Q22t/12+Q23t/13'

W= Q31~1 +Q32~2+Q33~3'

where ~i (i = 1,2,3) are given in eqns (39) and (51).
Let

AW = I ~~) dx-~V) dy+BC!) dz.
Jxo

C!) _ [a~~) _ c~V) , 2 ( a~~) at/ly)) 7
B - a dx _ d} +Sj - ~ + _ d_,

X
o

Z oz ex oy

(52)

(53)

(54)

where Xo is some point of the region Q and x is any point of the region Q. Because of
conditions (42) and (43), both linear integrals of eqns (53) and (54) are independent of
routes.

Using eqns (53) and (54), one yields

This shows

From eqn (53), we obtain

a
c

'1JAw = '1J~~) = 0,
X

a n2AlJ) = _n2 .CW = °ay V J v j '1'1 ,} = 0, 1,2.

~ '12 AC!) = '12 BC!) = 0DZ j } ,

'1JAlJ) =0, }=0,1,2.

(55)

(56)
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"'AU)
.i7UJ u_
'1'1 - oy'

Letting

eqns (56) and (58) lead to

A. oAw
,1,(/) - - -- . 0 1 2
'I' 2 - ox' } = , , .

SfA = O.

(57)

(58)

(59)

It follows from eqns (41), (57) and (58) that

Substitution of eqns (7) and (60) into eqn (52) and lengthy computation yields

where

Let

{
(l +:Xl)(;(2ViV~A = cPo,
- (;(3 V6 t//3 = F.

Then eqns (61) change into eqn (34). Therefore, solutions (34) are complete.

SAS 32:3/4-P

(60)

(61)

(62)

(63)



510 M. Z. Wang and W. Wang

6. ELLIOTT-LODGE SOLUTIONS

The following solutions are from Elliott and Lodge.

a orPo
u=-.:::-(rPj+rP2)--a 'ex y

o arPo
V=;:;-(rPj+rP2)+-a '

cy x

a
IV = az (k jrPj +k2rP2)'

(64)

where

V?rP; = 0, i = 0,1,2.

(65)

(66)

Theorem 7
Assume that the elastic region Q is z-convex and s~, ST, si are not equal to each other.

Then Elliott-Lodge solutions (64) are complete.

Proof Firstly, it is easy to verify that eqns (64) are the solutions of eqn (4) ; so it is
omitted. Secondly, we pointed out that any solution u of eqn (4) can be written in the form
of eqns (64).

Suppose that u has been written in the form of eqns (34) since the Lekhnitskii~Hu­

Nowacki solutions are complete.
According to Lemma 3 of the Appendix, we can assume that F of eqn (34) has the

following resolution:

where

v?f = 0, i = 1,2.

Setting

we have

V?rPi = 0, i = 1,2.

Substitution of eqns (67) and (69) into eqns (34) yields

(67)

(68)

(69)

(70)
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Considering eqns (68) and (69) and the identities

we have

where

511

(71)

(72)

(73)

( 1) All -A44 s;k = - IX f3 - - = ---'-=-----'-.~

I 5; (A 13 + A 44 )S; ,
i = 1,2. (74)

Substituting eqn (73) into eqns (71), we obtain eqns (64) ; and eqns (74) and (70) are
exactly equal to eqns (65) and (66). Thus, solutions (64) are complete.

Note: the special cases that any two among s~, sf, si are equal in theorems 5-7 will be
studied in future papers.

REFERENCES

Alexsandrov, I. Y. and Soloviev, U. I. (1978). Three-Dimensional Problems of Elastic Theory. Science, Moscow.
Chen, W. T. (1966). On some problems in transversely isotropic elastic materials. J. Appl. Mech. 33, 347-355.
Ding, H. J. and Xu, B. H. (1988). General solutions of axisymmetric problems in transversely isotropic body (in

Chinese). Appl. Math. Mech. 9,135-142.
Dundurs, J. (1970). Some properties of elastic stress in a composite. In Recent Advances in Engineering Science

(Edited by A. C. Eringen), Vol. 5, pp. 203-216. Gordon and Breach, London.
Elliott, H. A. (1948). Three-dimensional stress distributions in hexagonal aeolotropic crystals. Proc. Camb. Phi/.

Soc. 44, 522-533.
Eubanks, R. A. and Sternberg, E. (1954). On the axisymmetric problem of elasticity theory for a medium with

transverse isotropy. J. Rat. Mech. Anal. 3, 89-101.
Eubanks. R. A. and Sternberg, E. (1956). On the completeness of the Boussinesq-Papkovich stress functions. J.

Rat. Mech. Anal. 5, 735-746.
Heki, K. and Habara, T. (1965). Introduction of parametric functions into analysis of elastic thin plate. Proc.

15th Jap. National Congr. on Applied Mechanics, 1-4.
Horgan, C. O. and Simmonds, J. G. (1991). Asymptotic analysis of an end-loaded, transversely isotropic, elastic,

semi-infinite strip weak in shear. Int. J. Solids Structures 27,1895-1914.
Hu, H. C. (1953). On the three-dimensional problems of the theory of elasticity of a transversely isotropic body.

Sci. Sinica 2, 145-151.
Lekhnitskii, S. G. (1940). Symmetrical deformation and torsion of a body of revolution with a special kind of

anisotropy (in Russian). PMM 4,43-60.
Lekhnitskii, S. G. (1981). Theory of Elasticity ofan Anisotropic Body. Mir, Moscow.
Lodge, A. S. (1955). The transformation to isotropic form of the equilibrium equations for a class of anisotropic

elastic solids. Q. J. Mech. Appl. Math. 8, 211-225.
Lur'e, A. I. (1937). On theory of ordinary differential equations with constant coefficient. Acta Leningrad Inst.

(Phys.-Math.) 3, 121-126.
Neuber, H. (1964). On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat

continua. Proc. 11th. Int. Congr. on Applied Mechanics, 153-158.
Nowacki, W. (1954). The stress function in three-dimensional problems concerning an elastic body characterized

by transverse isotropy. Bull. Acad. Polon. Sci. CI. 4(2), 21-25.
Okumura, I. A. (1987). Generalization of Elliott's solution to transversely isotropic solids and its application.

Structural EngngjEarth"quake Engng 4, 401-411.



512 M. Z. Wang and W. Wang

Pan, Y. C. and Chou, T. W. (1979). Green's functions for two-phase transversely isotropic materials. J. Appl.
Mech. 46, 551-556.

Wang, M. Z. (1981). On the completeness of Hu's solution. Appl. Math. Mech. (Shanghi, English Edition) 2, 265­
272.

Wang, M. Z. (1985). The Naghdi-Hsu solution and the Naghdi-Hsu transformation. J. Elasticity 15, 103-108.
Wang, W. and Wang, M. Z. (1992). Constructivity and Completeness of the general solutions in elastodynamics.

Acta Mech. 91, 209-214.
Wang, M. Z. and Xu, X. S. (1990). A generalization of Almansi's theorem and its application. Appl. Math.

Modelling 14, 275-279.
Wang, W., Xu, X. S. and Wang, M. Z. (1994). Completeness of general solutions to axisymmetric problems of

transversely isotropic body. Sci. China Ser. A 37, 580--596.
Zhang, H. Q. (1979). A united theory on general solutions of systems of elasticity equations (in Chinese). Acta

DaLian Inst. 3, 23--47.
Zureick, A. H. and Eubanks, R. A. (1988). Spheroidal cavity with proscribed asymmetric tractions in three­

dimensional transverse isotropy. J. Engng. Mech. ASCE 114, 24-28.

APPENDIX

A region n is called z-convex if any straight line parallel to the z-axis intersects the boundary of n in at most
two points.

Lemma I
If the region n is z-convex and 1 satisfies

(AI)

where s is not pure imaginary and

there exists A such that

(A2)

[V;A =0,

l~: =1,
inn. (A3)

When s = I, V; appears as the Laplace operator; Lemma I has been proved by Eubanks and Sternberg
(1956). When s #- I, the proof is similar, so it is omitted.

Applying Lemma I several times, we have:

Lemma 2
In the same conditions as Lemma I, there exists B such that

(A4)

where k are positive integers.

Lemma 3
If the region n is z-convex and

there exist A(l) and A(2) such that

Proof Letting

then

vfv~A = 0, sf #- sL in n,

V}A0J=0, J=I,2.

B = V~A,

(A5)

(A6)

(A7)

(A8)
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VfB = 0.

According to Lemma 2, there exists All) such that

From eqns (A8) and (AID), we have

Thus

Letting

(AI2) becomes

513

(A9)

(AID)

(All)

(AI2)

(Al3)

(AI4)

The equation (Al3) is the same as (A6), and eqn (AI4) and the second equation (AIO) are the same as eqns
(A7) ; so the lemma is proved.

Similarly, we have:

Lemma 4
If the region n is z-convex and

where s~, sf, si are not equal to each other, there exist ACi! U= 0, 1,2) such that

A = AIO)+A(l)+A I2),

V] AU] = 0, j = 0, 1,2.

Eubanks and Sternberg (1954) proved Lemmas 3 and 4 when the region n is a body of revolution.


